Exact Rate of Convergence of Kernel-Based Classification Rule
نویسندگان
چکیده
A binary classification problem is considered, where the posteriori probability is estimated by the nonparametric kernel regression estimate with naive kernel. The excess error probability of the corresponding plug-in decision classification rule according to the error probability of the Bayes decision is studied such that the excess error probability is decomposed into approximation and estimation error. A general formula is derived for the approximation error. Under a weak margin condition and various smoothness conditions, tight upper bounds are presented on the approximation error. By a Berry-Esseen type central limit theorem a general expression for the estimation error is shown. AMS Classification: 62G10.
منابع مشابه
Almost Sure Convergence of Kernel Bivariate Distribution Function Estimator under Negative Association
Let {Xn ,n=>1} be a strictly stationary sequence of negatively associated random variables, with common distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1, Xk+1) for fixed $K /in N$ based on kernel type estimators. We introduce asymptotic normality and properties and moments. From these we derive the optimal bandwidth...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملConvergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings
This paper presents convergence analysis of kernel-based quadrature rules in misspecified settings, focusing on deterministic quadrature in Sobolev spaces. In particular, we deal with misspecified settings where a test integrand is less smooth than a Sobolev RKHS based on which a quadrature rule is constructed. We provide convergence guarantees based on two different assumptions on a quadrature...
متن کاملApplication of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel
In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....
متن کاملA Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data
Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...
متن کامل